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The deflection of flow around an isolated obstacle in a rotating homogeneous fluid 
is investigated. Criteria for the on@ of closed streamlines over an isolated obstacle 
are reviewed. In  the flow regime dvhere no closed streamlines exist, steady solutions 
for the stream function are obtained for both quasigeostrophic and finite-Rossby- 
number flows. A measure is proposed to allow quantitative evaluation of the flow 
patterns, and the dependence of deflection on abstacle volume and aspect ratio is 
examined. In the regime where closed streamlines can exist, the presence of a trapped 
vortex to the right (looking downstream) of the obstacle is investigated by means 
of time integration of the shallow-water equations. The significance of the trapped 
vortex for a real fluid is then tested through the addition of the frictional effect of 
Eckman pumping. 

1. Introduction 
1.1. Xtatement of the problem 

The problem of predicting fluid flow in complex terrain is one of great current interest 
to meteorologists as well as oceanographers. At this point, however, our understanding 
even of the flow of a rotating homogeneous fluid over and around a single obstacle 
of simple shape is still incomplete. 

For flows with no closed streamlines, i.e. for which all streamlines can be considered 
to originate upstream, a basic question concerns &he dependence of flow over versus 
flow around the topography on the parameters of the problem. The physical 
quantities needed to specify flow over a hill of heightscale h, and length- find 
widthscales 1, and 1, respectively in a shallow fluid with a free surface of mean depth 
h, and of infinite horizontal extent, with Coriolis parameter f, can be combined into 
five dimensionless parameters: relative hill height h* = h,/h,, aspect ratio A = Z,/Zz, 
hm/Z,, Rossby number Ro = u,/f 1, and rotational Froude number Fr =f”li/gh,. 

Most recently, Bannon (1980) investigated the dependence of flow deflection on 
many factors, including dissipation, rotation (Ro) and free-surface effect (Fr) .  Many 
of his results may be affected by the particular representation of friction included 
in the model, but for an aspect ratio A = 1 the dependence on Ro and Fr is reasonably 
clear and verifies the results of previous studies (e.g. Vaziri & Boyer 1971). He also 
showed that an obstacle with its long axis aligned normal to the inflow causes greater 
blocking and a more asymmetric response than the b m e  obstacle with its long axis 
downstream. His measure of deflection, however, gives little information about the 
resultant streamline patterns as an aid in predicting the flow for other values of A 
or Ro. A more systematic examination of dependence on obstacle shape remains to 
be done, and is the first goal of the present worp 

A criterion defining, for a circularly symmetric obstacle, the values of Ro and h* 
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(u) Antiphase (b)  In phase 

FIGURE 1.  Idealized vortex configurations in the wake of a pair of bluff bodies normal to a stream. 
(a) Two parallel streets in antiphase from antiphase vortex shedding. ( b )  Two parallel streets in 
phase from in-phase vortex shedding. Cylinders translating from left to right. 

are markedly higher than for the other cylinder (for example see Spivack 1946). The 
gap flow becomes stably deflected to the high-frequency side of the wake, and the 
cylinder on this side experiences a greater drag force thanthe other cylinder. There 
exists a mean repulsive lift force between the cylinders. The structure of the near wake 
has been previously shown from flow visualization to be confused in this ‘asymmetric- 
flow regime’, and very little has been deduced about the form of the wake flow. 
However, the deflection of the gap flow has been demonstrated (Ishigai et al., 
Bearman & Wadcock, Quadflieg) for Reynolds number in the region of lo4 or above. 

The total cylinder-pair drag force increases as gaps are reduced from g* = 4.0 to 
1.0. For smaller gaps the combined drag can become less than twice the isolated- 
cylinder drag (for example, Bierrman & Herrnstein 1933 ; Quadflieg). 

The present paper mainly involves flow visualization behind a pair of circular 
cylinders, and also behind a pair of flat plates normal to a steady stream. Dye- and 
smoke-visualization techniques are used. Where antiphase-vortex-shedding synchro- 
nization occurs the visualization in 0 3 clearly demonstrates that the resulting wake 
is a pair of antiphase parallel streets as found in other studies. However, in-phase 
shedding a t  the cylinders does not lead to two in-phase parallel streets as previously 
supposed, but rather to a large-scale combined wake. The like-signed vortices pair 
up and a ‘binary-vortex’ street is formed. Flow visualization in $4 also shows that, 
when the bodies are sufficiently close to produce an asymmetric wake, there is a 
distinct mode of shedding when the vortex-shedding frequency on one side of the wake 
is a multiple of that on the other side. Such a harmonic mode of vortex shedding has 
hitherto not been suggested. 

2. Experimental methods 
The present study of the vortex wakes of two bodies involves flow visualization 

using both smoke in a wind tunnel and dye in a water channel. For the smoke 
visualization a vertical low-speed wind tunnel with upward flow is used, which has 
a working section 12 x 6 in. in cross-section, and is 20 in. long. Two side-by-side 
cylinders of external diameter 0.043 in. spanning the shortest dimension of the 
working section were used to generate the vortex wakes. We assume blockage is 
negligible because the ratio of tbe channel width to cylinder diameter is 280: 1. The 
‘smoke’ is actually liquid kerosene in the form of fine droplets formed in a smoke 
generator of the Preston & Sweeting (1943) type. Reynolds numbers were in the range 
50-150. A Nikon camera is used in both methods of visualization (with 1 ms exposure 
times when using smoke). The smoke is illuminated by two 1000 W halogen bulbs 
providing a slit of light halfway along the length of the cylinders. 

For the dye visualization a closed-circuit water channel is used of depth 10 crn with 
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that each streamline originates upstream, then (1) implies that the potential vorticity 
is conserved along each streamline and 

If a uniform flow is assumed upstream and far from the obstacle, u-, = uo, v-, = 0. 
Then [-, = 0 and 

This vorticity balance follows strictly from the assumptions of shallow water and no 
closed streamlines. If we now assume that the Rossby number based on obstacle width 
is infinitesimal, then u x vg = k x V$g and 

V2$,+- fhs - - 0, 
h0 

(4) 

with V$g N (0, -uo) far from the obstacle. From (4) it  follows that the circulation 
about the obstacle is equal to - f /ho  times the obstacle volume. The quasigeostrophic 
vorticity equation (4) could of course be derived without the shallow-water assumption 
used in (1) by assuming the flow to be inviscid, homogeneous, steady, of infinitesimal 
Rossby number, with uniform flow upstream and all streamlines originating 
upstream. 

For axisymmetric obstacles, cylindrical coordinates are convenient, and $g can be 
expressed in the form 

( 5 )  $ =-  uor sin8+$(r), 

so that (4) gives 

and integrating once yields 

I d  fhs - - - (rJ,.) +- - 0, 
r dr h0 

_-  "- -fSths( t )d t .  
dr hor (7) 

Note that the obstacle height appears only under an integral, so that at least away 
from the obstacle the net volume determines the velocity perturbation. Equation (7) 
can be integrated to determine $, and thus the streamlines, explicitly. 

A criterion for the existence of a stagnant region, or inertial Taylor column, is found 
by determining when a stagnation point, i.e. a point where $@ = $,. = 0, exists in the 
flow. It is straightforward to obtain from (5) and (7) (Huppert 1975) that stagnation 
points can exist only for 9 = -in and r such that 

f= r 

ho uo r th,(t) dt 
J O  

For example, for the cone h,(r) = h,(l -./a), a value of r exists that satisfies (8) if 

where Ro = uo/fa. For 8 > as (4) no longer holds as c l o d  streamlines will exist. 
To investigate motions at finite Rossby number over topography of finite height, 

Johnson (1978) has examined steady solutions to the equations for hydrostatic 
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motions in an inviscid homogeneous fluid with a horizontal upper surface. Following 
his derivation, the non-divergence of the mass flux hu, where h = ho-hs(r), allows 
us to define a stream function such that 

V* hu = kxV$*. (10) 

Vorticity can then be expressed in terms of $* as follows: 

and for a uniform upstream flow we have, as in ( 3 ) ,  

For axisymmetric topography it is convenient to split $* into $: and $/2*, where 

with fh L($:) = 0 and L(@f) = -$. 
‘b0 

Far from the obstacle k x V!?+uoi and k*Ve/2*+O. Equations (14) can be solved, 
and an expression for the total stream function $* obtained: 

$* = -uo sinB(r+R(r))--fSh(f)r h o o t  0 sh,(s)ds dt, (15) 

where R(r)  satisfies 

For solution (15) a stagnation point first occurs at  0 = -?jn and r such that 

For a conical obstacle the critical values of h* = h,/ho are found numerically from 
(16) and (17) and plotted in figure 1 as the dashed curve. The quasigeostrophic result 
(Ro = &h*) from (9) is given as the solid line. The comparison of the two curves in 
figure 1 demonstrates that the quasigeostrophic solution underestimates the obstacle 
height required to cause closed streamline solutions for a given Ro. 

In  $2 steady solutions for the quasi-geostrophic case (4 )  and the finite-Rossby- 
number case (1 1) and (12) are obtained numerically in a systematic investigation of 
dependence of flow deflection on obstacle shape. A measure of streamline deflection 
is proposed and curves of dependence are constructed allowing prediction of 
streamline patterns as a function of obstacle-shape parameters. 

For the case S > Ss, in a flow starting up from rest, conservation of potential 
vorticity specifies that a region of negative relative vorticity is generated as fluid from 
upstream rises over the obstacle, creating a vortex bound to the topography. The 
column of fluid initially at rest over the obstacle, having a larger value of the potential 
vorticity than the surrounding fluid by virtue of shorter column height, will be 
stretched as it descends to the lee and a region of positive vorticity will be generated. 
It is plausible that for relatively strong oncoming flow the cyclonic eddy will move 
off downstream, while for relatively weak flow the interaction between the anticyclonic 
and cyclonic vortices will trap the eddy, as shown by Huppert & Bryan (1976). 
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FIGURE 1. Critical h* versus Ro for the existence of stagriation points in the flow around a cone: 
quasigeostrophic solution (9) (dashed) ; finite-Ro solution (17) (solid). 

In 93 a time-dependent fkite-difference model is formulated, and the results of 
integrations testing the criterion for formation of closed streamlines and existence 
of a trapped eddy are presented. In $4 are presented the conclusions of the study. 

2. Deflection of flow in the regime with no closed streamlines 
2.1. Parameter dependence of dejiection 

Some insight into the general parameter dependence of streamline deflection can be 
achieved through the following argument. For a homogeneous fluid with a horizontal 
upper surface of height ho, consider the class of geometrically similar obstacles on the 
lower surface whose height can be expressed in the form 

Here, instead of defining a stream function based on the mass flux as in (lo), we write 
the velocity components in terms of irrotational(g5) and non-divergent ($) parts, so 
that 

u = uo-$drr+g5z, v = $d.,+g5,, (19) 

where the vorticity equation, for uniform upstream flow, is again given by 

We define (Z, j j )  = (x, y ) / l z ,  $ = $/$,., and A = l& is the aspect ratio. Then (20) 
becomes 
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We now take +r = (fhm/ho) I ,  I , ,  and so 
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- _ -  
(21) 

Since j:{thdfdy = O(A) ,  3 = O(1). Thus 3 = $(Z,y, A) for a given h. Now the 
continuity equation for the fluid is the condition of non-divergence of mass flux : 

vz+ = - 4 %  $!/A) 
A '  

a a 
- [u(h0 - h,)] + - [v(ho - h,)] = 0. 
ax aY 

Using (19), this becomes 

(ho - hs) Vk d - Vd.VhS = @, hsy - &/ hs, + uo hs,. (22) 

We let 9 = d T $ ?  

and 

Then (22) becomes, defining h* = hm/ho, 

(23) 

Thus, for a given h(5, y, A),  (21) gives that 3 = T(5, $! ,A) ,  and, from (23), 
$ = $(A,  h*, Ro).  

Ro - _ _  _ -  
(1 -h*h))z$-h*V$*Vh = h*[$-h--$-L-]+-h- 

Z Y  Y X  A 2' 

An expression for the streamline deflection can be written, using (19), 

Since 

if we define a volume parameter 

then = F( v, A ,  Ro, 5, $!). (24) dZ 

For the quasigeostrophic case, i.e. as Ro+O with Vand A fixed (h*+O), then $ + O  
and 

(25) !!! = F( v, A ,  5, $!). d5 

Thus for quasigeostrophic flows the deflection must depend only on Vfor fixed A,  
i.e. on h*/Ro. Since a cone satisfies the class of obstacles (18), it  is clear that all points 
on the critical curve h*/Ro = 4f (solid line) in figure 1 correspond to the same 
deflection pattern, which would be the maximum deflection possible in the regime 
with no closed streamlines. 

The data in figure 1 are replotted in figure 2 in terms of the new volume parameter 
v and Ro (A = 1). The ordinate intercept is the quasigeostrophic value 
v =  h*/Ro = 4f, the limiting value as Ro+O. The other points are taken from the 
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FIGURE 2. Critical 7 versus Ro for the existence of stagnation points in flow around a cone. 

finite-Ro solution (17), the dashed line of figure 1. The usefulness of the new parameter 
is evident; the plot shows clearly the effect of finite Ro. 

2.2. The experimental obstacle 
We wish to examine numerically the effect of aspect ratio on the flow field. As the 
critical curve for flow around a cone has been established, this shape was chosen 
as the case A = 1. To widen the obstacle in the cross-stream direction, a ridge of 
triangular cross-section was inserted between the two halves of the cone, as depicted 
in figure 3 ( a ) .  The aspect ratio was defined as A = l&. The volume of such an 
obstacle, normalized by Ro h,, l:, can be expressed as 

h* 0.95 
Ro 

The chosen obstacle is not expressible in the form (18). However, the deflections can 
be shown to depend only on V and A or, equivalently, V* and A. In  describing our 
results, V* and A will be used. 

2.3. The measure of dejection 

In  order to compare deflection of the flow for various cases it was necessary to devise 
a quantitative measure of the flow around an obstacle. To this end, consider the 
streamline that just passes over the centre of the obstacle, as shown in the schematic 
diagram of figure 3 ( b ) .  The deviation of that streamline from the centreline of the 
channel at an arbitrary distance upstream gives an indication of the magnitude of 
the deflection of streamlines. A non;dimensional measure can then be defined through 
normalization by the downstream half-width of the obstacle 1,. In  the following 
experiments the deflection was measured one cone diameter upstream from the 
obstacle centre, i.e. at Z = - 2 .  

2.4. The domain of solution 
The domain considered was a channel with rigid sidewalls at which &++-/ax = 0. At 
the inflow boundary a constant zonal flow was specified, and at the outflow boundary 
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(b) 

FIQURE 3. Schematic of obstacle showing lengths used to define (a) aspect 
ratio A ,  volume V * ;  ( b )  the measure of deflection m. 

a cyclic condition was applied. The intent was to achieve results arbitrarily close to 
those for an isolated obstacle on an infinite plane by considering a finite domain of 
sufficiently large dimensions. 

It can be shown that a channel width cannot be uniquely determined such that 
the influence of the sidewalls on the flow pattern is within some bound. For 
quasigeostrophic flow the channel ( z  = x + iy) can be mapped into a semi-infinite plane 
for the transformation 

where a is the channel half-width, i.e. y = +a are the channel walls, which map into 
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FIQURE 4. Results of experiments showing m aa a function of V* with A fixed: 
quwigeostrophic caae (solid): finite-Ro case Ro = 0.15 (dashed). 

the real c-axis. A point vortex of strength - r at zo = x, + iy, maps to the point in 
the c-plane: 

5, = i e x p e ) .  

To ensure that there is no flow through the channel walls, a vortex of strength +r 
must be placed at 5: in the c-plane. The stream-function perturbation at 5 due to 
the point vortex is then 
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4 5 6 2 3 v 4  
1 

FIGURE 5. Contours of deflection measure m as a function of A 
and V* for the fmite-Ro case (Ro = 0.15). 

where we can take r to be f/ho times the volume of an infinitesimal element of an 
extended topography. 

For I z I/a and 1 z, I/a a 1 the disturbance due to an isolated portion of the extended 
topography can be expanded in a power series a-l, and we obtain 

where fi is linear in xo and yo, and fs is quadratic in terms of its arguments. The net 
effect on @g due to an extended topography is the sum over all elements of volume 
of the topography. It is clear that the effect of the sidewalls varies both with the shape 
of the topography and with the location, and i t  is impossible to keep sidewall effects 
fixed while varying the topography. Thus the effect of channel dimension and grid 
resolution on the particular measure chosen was determined by numerical experiment, 
and the boundaries chosen far enough from the obstacle to have little effect on the 
measure of deflection and to simulate an unbounded domain (see the Appendix). 

2.5. The experiments 
For quasigeostrophic and finite-Ro flows, (4) and (12) respectively were solved by a 
standard iterative technique (SLOR). Experiments were performed for A = 1.0,2.0, 
3.0; for fixed A the variation with V is shown in figures 4(a-c). The solid curves are 
derived from solutions of the quasigeostrophic model and represent the limit as 
Ro+O. The dashed lines are drawn through values from the finite-Ro model, for 
Ro = 0.15. The effect of finite Ro is not large; in figure 4(c) the two curves are 
indistinguishable. For both models, the increase in deflection with volume for given 
aspect ratio is clearly seen. 

Finite-Ro results are replotted to allow contours of m to be drawn as functions of 
A and V*, shown in figure 5. These contours facilitate prediction of deflection for an 
obstacle of roughly similar shape and more general dimensions. As A increases with 
V* fixed, deflection decreases, and, as ?'* increases with A fixed, deflection increases. 

3. Regime with closed streamlines 
The numerical results presented here are derived from integration of initial-value 

problems based on the inviscid shallow-water equations. Including both the Coriolis 
term and the pressure-gradient term that arises in the presence of bottom topography 
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of height h,(x, y), the equations governing the perturbations to a resting state can 
be written 

where h is the depth of the fluid column, and the Coriolis parameter f = s-l 
throughout. 

If the initial free-surface perturbation ?lo is tilted such that the pressure is in 
geostrophic balance with a constant zonal flow uo for a channel with flat bottom, that 
is 

then the initial state constitutes a steady solution in the absence of bottom 
topography. With bottom topography present (27) will not be exact in the vicinity 
of the obstacle, but does tend to minimize the amplitude of spurious components end 
deformation of the zonal flow field. 

The arrangement of variables on the grid and the bite-difference scheme for (26) 
is that presented in Arakawa t Lamb (1983). The space-differencing scheme is of 
second-order accuracy and maintains finite-difference analogues of the laws of 
conservation of energy and mean-square potential vorticity that hold for such a fluid. 
Leapfrog differencing in time, a second-order scheme which is neutral for the linear 
case, was used. The weak instability that arises with the use of a three-level scheme 
in nonlinear equations was suppressed by a forward step inserted periodically. 
Although there are higher-order schemes that give better simulation of pure 
advection, in the present problem conservation of potential vorticity is of great 
importance and the chosen scheme has been shown (Arakawa & Lamb 1983) to give 
a good representation of topographically induced eddies. 

The channel extended in x from - L, to + L,, where, as in the steady solutions 
of $2, cyclic boundary conditions were assumed. A conical obstacle with a radius of 
5 km was centred in a channel of 26 km width, 50 km length and 0.5 km depth, with 
a grid spacing of 1 km. The results of the Appendix for the steady problem with a 
rigid lid indicate that these dimensions give an adequate representation of flow on 
an unbounded plane, at least near the centre of the channel. 

The effect of the free surface is to decrease slightly the vorticity and resultant 
acceleration generated by the column shortening aa flow paasses over the obstacle. In  
these experiments RoFr = 0(10-3), and the equilibrium horizontal surface in the 
asymptotic state can be shown sufficiently undisturbed that a good comparison to 
the rigid-lid solution is possible. A sample integration allows us to compare the model 
results with the finite-Ro rigid-lid solution (15). For values Ro = 0.1, h* = 0.5, h*/Ro 
is less than critical for a cone, and no closed streamlines should exist in the steady 
state. Figure 6 (a) shows velocity vectors from the time-dependent model after 6 days ; 
velocity vectors derived from the analytical solution (15) and (16) for the same Rossby 
number are shown in figure 6(b) for comparison. The solutions differ slightly at the 
sidewalls, but the solutions near the obstacle are very dose. 

The first point to be investigated is the significance of the criterion (17) for 
formation of a stagnation point in finite-Ro flow over a conical obstacle. For h* = 0.5 
the case Ro = 0.1 (u, = 5 cm/s), lying below the dashed curve in figure 1,  should 
correspond to a flow with no closed streamlines. Velocity vectors for the case Ro = 0.1 
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FIQURE 6. Results from the time integration for flow around a cone with h* = 0.5, Ro = 0.1 : 
(a)  velocity vectors from solution of numerical model after 8 days integration; ( b )  velocity vectors 
from soiution of ( 1  5). 
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FIGURE 7. Results from the time integration for flow ar ,und a c m e  with h* = 5, 
Ro = 0.1 : contours of lOc/f after (a) 2 daj M; (b)  4 days. 

are shown in figure 6 (a) : after 6 days only the bound vortex is present and the flow 
is approaching the up- and downstream symmetry of the steady state. The plots of 
non-dimensional vorticity (lO[/f is shown) for 2 and 4 days, shown in figures 7 (a) 
and (b)  respectively, clearly show the shed eddy being swept downstream. (The weak 
negative vortex trailing the shed eddy is an artifact of the space-differencing of the 
potential vorticity, created as the column of fluid initially over the obstacle is 
advected off the obstacle.) 

The case Ro = 0.075 (uo = 3.75 cm/s) was chosen to investigate the transition 
between the trapped- and the shed-eddy regimes, where as < 6 < ST and for which 
Johnson's variational approach can give no information. This case is slightly above 
the dashed line and should correspond to a regime with closed eddy bound to the 
obstacle. Another eddy formed of fluid initially above the obstacle should form in 
the lee; whether this shed eddy is trapped near the obstacle in the steady state or 
is swept downstream is another point to be investigated. The non-dimensional 
vorticity lO(/fis shown in figures 9 (u-c) after 2,4  and 6 days integration. The positive 
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FIGURE 8 (u, b ) .  For caption see facing page. 
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(4 
FIQURE 8. Results from the time integration for flow around a cone with h* = 0.5, Ro = 0.05: 
(a) velocity vectors after 8 days; ( b ) ,  (c), (d) contours of 10c/fafter respectively 2, 4, 10 days. 

vortex is clearly shed downstream. If a transitional regime of partial trapping exists 
it is not evident at  this Rossby number. 

For h* = 0.5 the case Ro = 0.05 (uo = 2.5 cm/s) is well above the. dashed curve, 
and could be expected from the results of Johnson (1978) to correspond to trapping 
of the shed eddy by the bound eddy. The velocity vector pattern after 8 days for 
the case Ro = 0.05 is shown in figure 8 (a), and the hypothesis of Johnson is verified, 
for there is a pair of eddies in the vicinity of the obstacle. The vortex on the right-hand 
side, looking downstream, is the shed eddy that has been trapped by the bound vortex 
over the obstacle. These vortices can be clearly identified by an examination of the 
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FIGURE 9 (u, 6 ) .  For caption see facing page. 

contours of the non-dimensional vorticity lOc/j after 2, 4 and 10 days, shown in 
figures 8(bd). The large positive values to the right of the obstacle corresponds to 
the trapped vortex, which shows no tendency to drift off downstream even after 
10 days. 

The total vorticity contained in a bound vortex such as that of figure 8 ( d )  can be 
roughly predicted if it is assumed that the upper surface is horizontal and rigid, and 
that all the fluid in the vortex comes from upstream. Then conservation of potential 
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FIGURE 9. Results from the time integration for flow around a cone with Ro = 0.075: (a), (b ) ,  
(c) contours of lOc/f after respectively 2, 4, 6 days. 

vorticity (3) gives that for the cone given by h,/ho = h*(l - a / r )  the total non- 
dimensional vorticity over the obstacle is given by 

A similar calculation for the trapped vortex yields a value of +$a2h*. With h* = 0.5 
and a = 5 km, (28) gives a total vorticity of - 13.1 km2. For the case shown in 
figure 8 (d), with the same parameter values, a summation of [/f over the gridpoints 
within the obstacle base gives a value of - 12.4 km2. For the case of figure 8 ( d )  a 
summation of the positive [/j over the extent of the trapped vortex gives a 
comparable value of + 12.5 km2. Within the range of the truncation error of the 
numerical scheme, this value supports the hypothesis that all vorticity is contained 
in the bound and trapped vortices. 

The significance of the trapped-vortex regime depends on its applicability to a real 
fluid. With even a small amount of viscosity present, the paired-vortex regime may 
not constitute a steady state. To test this with the present model, the effect of a small 
vertical velocity induced at the bottom by Ekman pumping is added to the continuity 
eauation (26 b )  : 

where K is the constant eddy viscosity. The potential-vorticity equation derived from 
(26a, b) then has the form 

i f f  % [ the timescale for spindown is thus h,/(K/2j’)lf. It was desired to make the 
ratio of this timescale to the advective scale as large as possible without requiring 
a prohibitively long integration of the model to determine the resulting final state. 
A ratio of 10 was chosen (a spindown time of 23 days) and the integration for 
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FIQURE 10(a,b). For caption see facing page. 

Ro = 0.05 repeated. The non-dimensional vorticity 1O[/f of the resulting flow after 
2 days, shown in figure 10 (a), is very close to that of figure 8 ( b )  - the same case, 
but without viscosity. However, after 4 days integration (figure l o b )  the shed eddy 
is beginning to move, and after 10 days (figure 10e) it is clear that the initially trapped 
vortex is moving off downstream. The result suggests that, in the presence of even 
a small viscosity, the trapped regime ceases to  exist. On consideration, this is not 
surprising, for in the steady state it can be shown that closed streamlines embedded 
in regions of positive or negative vorticity ,cannot exist. If such a situation is 
postulated, integration of (30) around a streamline indicates that a change of 
potential vorticity should occur in one circuit, which is contrary to the steady-state 
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FIQURE 10. Results from the time integration for flow around a cone with Ro = 0.06, with 
small viscosity present: (a),  (b ) ,  (c) lOc/f after respectively 2, 4, 10 days. 

(4 

assumption. For example, if [([+I) is of one sign everywhere along the streamline, 
then the change in potential vorticity in one circuit is given by 

where L is the length of the streamline and q the speed. 

4. Conclusions 
Shallow-fluid flow in a channel, with rotation, over and around a single obstacle 

of simple shape was investigated by means of solution of the steady vorticity equation 
for quasigeostrophic and finite-Ro flows and by time integration of a numerical model. 

Numerical experiments examined, for the regime with no closed streamlines, the 
dependence of flow deflection on the obstacle dimensions. A measure was proposed 
to assess quantitatively the flow deflected around the obstacle, and a set of 
experiments was conducted to determine the dependence of the measure on obstacle 
volume and aspect ratio. The resulting graphs make possible, within the limitations 
of the model, prediction of flow pattern from a knowledge of basic flow and obstacle 
parameters. Deflections increase with volume for fixed aspect ratio and decrease with 
increasing aspect ratio for fixed volume. 
In the regime where closed eddies may exist, time integration of the shallow-water 

equations was used to test an analytically based hypothesis for the dependence of 
the flow regime for an axisymmetric obstacle on Rossby number and obstacle height. 
The existence of a small-Rossby-number regime in which the vorticity originally over 
the obstacle remains trapped in the vicinity of the obstacle was verified. The 
elimination of this trapped vortex when a small Ekman suction was introduced was 
also shown. A t  a slightly higher Rossby number, in the absence of Ekman suction, 
a stagnation point is formed and a bound vortex is present over the obstacle, but 
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no positive vorticity is trapped in the vicinity of the obstacle. At  a still larger Rossby 
number, for which no stagnation points are predicted analytically, the vorticity 
originally over the obstacle is shed downstream and no closed streamlines exist. 

The first author acknowledges the support of the Environmental Protection 
Agency under Grant CR-807854 and the advice and interest of S. P. S. Arya, 
principal investigator of that grant. The second author acknowledges the support of 
the National Science Foundation under Grant ATM 78-16408. 

Appendix. The effect of finite boundaries 
In  the quasigeostrophic theory it is a simple matter to calculate a value for the 

deflection measure for a conical obstacle of radius a in an unbounded domain for 
given h*/Ro. Letting $, = -uo y+ $;, (4) becomes 

1 d d$' ; ( r  2) = -fi* ( 1 - :) . 

Hence for r < a 

for r 2 a 
- fhd r 

6 a  
In -- uo y ; $g =- 

and at  x = y = 0 $, = &j%*a2. 

The deflection m is determined by requiring that kg at x = --a, y = -am is equal 
to $g a t  the origin. Hence 

&$%*a2 = uoam-&fh*a2 In (4+m2)i, 

or 
h* 5 h* 

m-- In (4+m2)z = - - 
6Ro 36 Ro 

At  the critical value of h* (=  ~ R o ) ,  we find using an iterative procedure that, for 
h*/Ro = y,  m x 1.57. 

The quasigeostrophic model was used for the following experiments ; the conclusions 
were then utilized in choosing dimensions in the finite-Ro model, as well as in the 
finite-difference model. 

For the cone (A = 1) and the case h*/Ro = 9, the ratio of channel half-length L, 
to obstacle radius I, was fixed at 5, and the ratio of channel half-width L, to 1, varied 
from 3 to 6.5 in steps of 0.50. The values of m for each case are plotted in figure 11, 
with the dashed line corresponding to a grid resolution of 5 pointsll,, and the solid 
line to the finer resolution of 10 pointsll,. For this range of values, the decrease in 
m with the increase of resolution, which gives an estimate of truncation error, is less 
than 2 %. The error incurred due to the presence of sidewalls rather than an infinite 
plane, estimated from the effect of increasing the channel width, is small, e.g. an 
increase of L,/lx from 5.0 to 6.0 results in an increase in m of only 0.5 yo. The value 
Lullx = 6.0 was used in the steady experiments of $2.  

For larger aspect ratios an analytic value for the deflection is not simple to 
compute. Thus experiments were conducted, again with Lx/l ,  = 5, increasing channel 
width until the curve of m-values appeared to be approaching an asymptote, as shown 
in figure 2. For A = 2,  h*/Ro = 2.5 the change in m as shown by the solid line becomes 
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FIGURE 11. Variation of m with channel cross-stream width for a cone ( A  = 1)  with a resolution 
of 5 pointsll, (dashed) and 10 pointsll, (solid); analytically derived value shown aa thin solid 
line. 
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FIGURE 12. Variation of m with width of channel cross-section 
for A = 2 (solid), A = 3 (daahed). 

acceptably small for Lv/lv = 3.5. For A = 3, h*/Ro = 2.0 the change as given by the 
dashed line was judged to be negligible for Lv/lv = 2.5. 

All experiments, both quasigeostrophic and finite-Ro, were carried out with the 
finer resolution 1, = IOAs. For the case A = 1 a grid of 100 x 120As (total length x total 
width) was used. For A = 2 a channel 100 x 140As was used; for A = 3 the channel 
measured 100 x l6OAs. 

The finite-difference model used in the time-integration experiments of $3 used 
the coarser resolution 1, = 5A9 (dashed curve in figure 11) and the ratios L,& = 5, 
Lv/lg = 5. These values were judged to be in an acceptable range for the purposes 
of that model. 
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